Operation Moonshot – A Costed Solution Implementation

The Francis Crick have successfully built a process for Covid PCR testing for patients and NHS Staff. The Crick have also validated a reverse transcription loop-mediated thermal amplification (RT-LAMP) method for 25-minute coronavirus testing. The best way to realise Operation Moonshot is to bring the two processes together and deliver across 200+ NHS trusts.

The following is a costed break-down of all of the necessary components within a solution architecture. I try to provide costed reasoning for all of my assumptions and to use fixed cost points and recent precedent. The costs are broken down into 5 areas: equipment, self-swabbing (as drive thru won’t scale), RT-LAMP testing, IT & processes and rollout. I believe that Operation Moonshot could be delivered for half the UK Government’s initial assessment.

  1. Testing Equipment: The UK Government has already invested in the novel RT-LAMP test capability. The highest throughput machine is the Oxford Nanopore PromethION 48 which can process 15000 RT-LAMP tests a day. Each machine costs just under half a million pounds meaning that handling 10million tests a day would require 667 machines at a non-discounted prices of a third of a billion pounds.
machine list price£476,145
tests per machine15,000
tests a day10,000,000
nhs trusts220
number of machines666.67
cost of machines£317,430,000
cost per trust£1,442,864
cost per trust for RT-LAMPore machines
  1. Testing Capacity Increase & Self-Swabbing Costs: The UK already has an appointment booking process for the national pillar 2 swab testing. These tests are carried out in car and involve bagging the swabs with pre-registered barcodes. There are 50 test sites in the UK which provide the majority of the UK’s capacity of 350k a day. Increasing the testing capacity to 10m a day would require nearly 1500 sites and tens of thousands of more testers.
current test capacity350,000
number of test sites50
site processing capacity7000
number of sites required1,429
Drive through testing capacity

The other testing approaches would be either localised testing making use of any medically trained personnel or through self-testing through posted self-test kits. We will examine the self-test model: Based on 10m test a day the whole UK population will be tested each week meaning that everybody in the UK should be receiving a number of tests through the post. Self-testing would have a lower rate of accuracy but this would be mitigated by the sheer size of the testing quorum. The collection of self-tests will need to be within 24-48 hours for the test to be valid and testing centres will be reliant on the immediate return of tests.

tests a day10,000,000
unit cost per kit£0.50
daily cost£5,000,000
kit test cost for 1 year£1,825,000,000
courier costs per kit£2.50
daily courier costs£25,000,000
courier cost for 1 year£9,125,000,000
total£10,950,000,000
Self-testing costs

The kit and courier costs of 10m tests a day would be in excess of a £10bn a year even with the lower possible unit prices for kits and couriers. To be cost effective the self-test model would need a local drop-off and collection area to lower the total courier costs. Based on a drop-off model of £10 per 100 tests the yearly cost would decrease to 2bn a year.

tests a day10,000,000
unit cost per kit£0.50
daily cost£5,000,000
kit test cost for 1 year£1,825,000,000
drop-off courier costs per 100£10.00
daily courier costs£1,000,000
courier cost for 1 year£365,000,000
total£2,190,000,000
Self-test drop-off costs
  1. RT-LAMP Testing & Results Process: RT-LAMP testing will unpack all self-swab packs and run each sample through the testing lifecycle producing a result within 25 minutes. Test results will need to be validated by medical professionals and positive tests need to be recorded against the summary care record and notified to the relevant Public Health Authority. If each NHS trust would have between 3-6 RT-LAMP machines handling tests and each machine would require a minimum staff of 6 people to continually operate and validate the test results. At an average cost of £40k per FTE this would cost more than £200m per year.
tests a day10,000,000
nhs trusts220
RT-LAMP machines per trust4
trust daily throughput45,455
daily FTE requirement24
extra staff requirement5280
staff costs£211,200,000
Assessment of staffing costs for handing RT-LAMP process
  1. Central IT Costs, Notifications and Mobile App: The national roll-out of a 10 million a day testing service would be vastly complex, far more complex than mere rocket science! Achieving such a service would require both centralised common processes and local variations to succeed. A good example of local variances would be the designing of the self-swap collection locations. A successful would also need the IT and process functions to be right first time, including the mobile app launch. The IT functions could be realised within a multi-tenanted ITIL compliant solution (e.g. ServiceNow) which would allow centralisation and local variances. Such a solution would also allow for stock and asset management. All test records could be centralised from the RT-LAMP machines and then fed to the relevant PHA’s by integration with the final notifications going to the public via a mobile app. Staffing would manage the end to end processes and the criticality of the data demands a security overhead. It is not unreasonable to include a 30% contingency on the total.
centralised IT process£5,000,000
localisations budget£10,000,000
staffing£2,500,000
mobile app£2,000,000
PHA integrations£2,000,000
security£3,000,000
contingency£7,350,000
total£31,850,000
Assessment of IT and process costs
  1. Rollout Process: Rollout costs should be viewed separately as deployments would take time to bed in and would need a degree of local stock and asset management. Precedent suggests that getting to 100k daily tests would have more easily achieved with a lot of small ships rather than following a centralised model. It is therefore not unreasonable to suggest a £10m budget per trust for rollout processes. If the rollout were to include many more smaller GPs then that budget would have to be increased, for this reason I’ve included a 30% contingency.
number of trusts220
cost per roll-out£10,000,000
contingency 30%£660,000,000
total£2,860,000,000
Roll out costs
  • Total: The total cost assessment is for one year only but is approximately half of the UK Government’s assessment of £10bn. The most accurate costs are for the Testing Equipment based on the capacity and list prices of the Oxford Nanopore equipment. The self-swabbing approach is based on a collective drop-off solution as otherwise another £8bn could be spent on individual collection of swabs. The RT-LAMP costs as predominantly staff costs for 5000 new staff. The IT costs include a 30% contingency and are based on the UK Government getting its IT right first time. The rollout costs are the the highest individual costs but should be a year one only cost and do not include any economy of scale across multiple NHS trusts who may be able to work together.
Testing Equipment£317,430,000
Testing Capacity Increase & Self-Swabbing Costs£2,190,000,000
RT-LAMP testing£211,200,000
Central IT Costs, Notifications and Mobile App£31,850,000
Rollout£2,860,000,000
Total£5,610,480,000
Total cost assessment

Operation Moonshot has not published any assumptions, cost validation or time period for its £10 billion total cost. The above costs are all based on my recent previous experience of Covid-19 PCR testing. It is not unfeasible that Operation Moonshot could be achieved for half the costs currently being claimed.

IT Spend Analysis of UK Government U-Turns in 2020 (so far)

There have been 10 UK Government U-Turns so far in 2020. Each change will have had an associated IT change cost. This is my best personal assessment of what each of these changes would likely have cost. I will provide justification for each of my assumptions and will tend towards a lower possible range. I will t-shirt size each U-turn using Low (£500k), Medium (£2-5m), High (£10m) and Very High (£50m+) as thresholds.

U-Turn Number 1: Testing In The Community 12th March – IT cost assessment: Low (circa less than £500k sunk cost)

  • This U-Turn was a retraction towards testing in hospitals rather than testing in the community. There would have been a ‘sunk’ IT cost for the testing in the community work. This testing would have involved Public Health England implementing a field service for remote swab testing and delivery of those swabs to test centres. The IT required would have extended PHE’s time booking system and resource planning. IT changes to these systems would have had IT costs. As this was scrapped relatively early we can assume that there would have been no further licence of infrastructure costs.

U-Turn Number 2: Face Coverings – IT cost assessment: Zero

  • No IT changes as this was a policy and information change.

U-Turn Number 3: NHS visa surcharge – IT cost assessment: Medium (£2-5 million sunk cost)

  • The NHS surcharge has been around since 2015 and is paid when applying for a UK visa. There are a number of applicants who do not have to pay it. The payment method is an online transaction (or cash if from North Korea). The government U-turn means scrapping an existing process and an IT solution that is less than 5 years old. Making the assumption that any online electronic payment solution (at UK government rates) would cost at minimum £0.5m to implement added to the integration costs (£0.75m) with UK visa system and vetting services within (another £0.75m) NHS trusts it is not unreasonable to expect a £2million sunk cost. The service is still available here.

U-Turn Number 4: NHS Staff Bereavement Scheme – IT Cost Assessment: Low (£500k as predominantly configuration changes)

  • The bereavement scheme, introduced in April, initially excluded cleaners, porters and social care workers. Introducing more groups would have incurred some configuration changes to the claims process and new infrastructure costs. £100k would be a low assessment for implementing these changes.

U-Turn Number 5: MP Proxy voting – IT Cost Assessment: Zero (no actual change)

  • The government had to U-turn to allow shielding MPs to vote by proxy. The remote proxy voting system will have had an IT cost but as no IT systems were removed there is no sunk cost for this U-turn. The introduction of a secure proxy voting system will have a necessary cost.

U-Turn Number 6: Re-opening schools – IT Cost Assessment: Medium (£2-5m as schools will have scaled IT for different re-openings)

  • The school re-opening would have forced each individual school to scale its IT solutions according to the expected demand. Centralisation of IT across the UK’s 33,000 schools provides an economy of scale but there will still have been significant unnecessary overspend caused by a late U-turn.

U-Turn Number 7: National school meal vouchers – IT Cost Assessment: Medium (£2-5m for claims process and roll-out)

  • The introduction of a national school meal voucher system required an immediate build of an IT claims and spend system. It will also have required IT investment in each supplier’s ability to scale. As this was predominantly a procedural and sizing change we can assume that the IT impact would have been relative to the size of the roll-out. For this reason I’m assessing this as having a medium impact.

U-Turn Number 8: UK Contact-tracing app – IT Cost Assessment: High (£10m+ major investment on a non-usable disliked technology)

  • As of June 2020 we know that the cost of the UK tracing app was £11.8m. It is not unreasonable to expect further costs to have been spent on testing across the Isle of Wight and preparing for national rollout.

U-Turn 9: Local contact tracers – IT Cost Assessment: Very High (£50m+ with major write-off of a centralised contract tracing service)

  • The centralised contact tracing model had its own IT solutions which are now inappropriate for scaled local use. The centralised solution had scaled infrastructure and licences for 18,000 users. It would have had a communications service equivalently scaled. The local authority solutions could not have easily been separated from the national solution meaning a lot of new build and completely new infrastructure. The costs would be very high because it has to include the completely throw away nature of the national solution and the costs of multiple stand-alone local authority solutions.

U-Turn 10: A-level and GCSE results – IT Cost Assessment: Medium (£2-5m for building and implementing algorithm and significant testing costs)

  • The government was forced to act after A-level grades were downgraded through a controversial algorithm developed by the Office of Qualifications and Examinations Regulation, leading to almost 40 % of grades awarded being worse than expected by pupils, parents and teachers. This service would have had to incur a cost to model, develop and test. It would needed to have been developed in less that 3 months and to be applied across a large data set of disparate data feeds. Different algorithms, and builds, would need to have been applied for GCSEs and A-levels.

Conclusion: Total Cost Very High (Low estimate £150m+)

Change is the most expensive process in IT. Fast change is even more expensive. Waste also incurs a missed opportunity cost of what else could be done with the capital investment. It also creates a culture of inefficiency where requirements become designed to handle all possible future change rather than focusing on immediate deliverables. All of these U-turn costs were avoidable. All governments should be held to account on the waste associated with U-turn changes.