The Internet of Things, as distinct from the internet of people, requires communication between devices to enable home automation, telematics and health care monitoring. This intercommunication is dependent upon semantically structured and shared data for enabling functions such as identification, authentication, authorisation, bootstrapping and provisioning. Standardising both the semantically structured data and the enabling functions across M2M applications and devices would reduce the cost and extend the life of M2M devices. Standardisation for the Internet of Things is the aim of a common service layer for M2M.
There is no single internet definition for the Internet of Things, but to function as a network “Things” must have representation within the Internet. This representation includes structured data (e.g., status, capabilities, location, measurements) which needs to be semantic in order to be shared, processed and acted upon. The sharing and discoverability of information requires governance according to privacy settings and access rights. Because the Internet of Things (IoT) requires M2M application and device communication within minimal or no human involvement these privacy settings and access rights need to represent the delegated authority of the human user. Therefore M2M devices require bootstrapping of provisioned M2M service credentials (e.g. identities, M2M Root Key) which can be used for connecting and registering with different service layers and service authorities.
M2M devices can be active such as Zigbee sensors or passive such as RFID tags. M2M devices can be connected to an MNOs network using eUICCs or can be connected to an IP extending personal area network (e.g. Zigbee gateway). The ETSI principles for M2M & smart device communication are RESTful resource oriented APIs that are IP based but interwork with specific IP and non IP technologies in the M2M Area networks. The variance between device communication mechanism (IP & non-IP) and behaviour (passive vs active) makes defining an embeddable M2M common service layer a challenge.
The oneM2M group aims to develop technical specifications that address the need for a common M2M Service Layer that can be readily embedded within various hardware and software, and relied upon to connect the myriad of devices in the field with M2M application servers worldwide. The common M2M Service Layer should be agnostic to underlying network technology (yet leveraging the unique features of these underlying networks), and it will use network layer services (such as security (encryption and authentication), QoS, policy, provisioning, etc.) through an adaptation layer/APIs.
The challenge for Authentication, Authorisation & Accounting in M2M will be to build trust between the human user and the delegated authority to the M2M device. In order for an embedded common M2M service layer to operate it must support AAA (authN, authZ & accounting) for smart devices using an agreeable mechanism between multiple device manufacturers and network operators. The Telecommunications Industry Association are defining a functional standard for Authentication, Authorization and Accounting for Smart Device (AAA-SD TIA) which is encapsulated in TIA TR-50 Functional architecture for M2M Smart Device Communication System Architecture describes AAA-SD as ” provide authentication, authorisation and accounting services to other entities in the network to establish and enforce security policies. The services may include generation of keys, generation and validation of certificates, validation of signatures, etc”. The functions proposed by the oneM2M service layer must align with TIA TR-50.